Byzantine Fault Tolerance in Distributed Constraint Optimization

Problems (Supplementary Material)

Koji Noshiro! and Koji Hasebe!

YUniversity of Tsukuba

Abstract

This document is the supplementary material for the
paper "Fault Tolerance Against Byzantine Faults in
Distributed Constraint Optimization Problems”.

A Proof of impossibility result

This section presents the proof of the impossibility
result of FT-DCOPs.

For any g and k such that ¢ < 2k, no (g,k)-
complete FT-DCOP algorithm exists.

Proof. We prove this theorem by contradiction. We
assume that there exists a (g, k)-complete FT-DCOP
algorithm 7 such that g < 2k. Without loss of gen-
erality, we assume that 7 is deterministic.

Consider the following two FT-DCOPs P and P’:

P = (A’X7D7F’Oé77)7
Pl = (A7 X7D7F/’ a”}/) *

These FT-DCOPs differ only in their sets of utility
functions. The sets are defined as F' = Fy U {f;} and
F' = Fy U{f!}, where Fy is a common set of utility
functions. The utility functions f; and f; differ only
in their values, having the same scopes and satisfying
A(fz) = A(f). We assume that [y(f)| = [1(f)] = .

In the two FT-DCOPs, we consider two distinct
sets of faulty agents, B and B’. Since |y(f;)|
g < 2k, there exist B and B’ such that |y(f;)|
2v(fi) N Bl, Iv(fi)l < 2|y(fi) N B'|, and BU B’
2f2) = (). Additionally, let 5(f;) = (f;) N

&I IA

and B'(f!) =~(f/) N B'. We also define S = BN B/,
S=DB\S,and S’ = B\ S.

We further assume that there exists a variable x,
such that a(xp) N (BU B’) = 0 and the sets of xp’s
assignments in the optimal solutions of P and P’,
denoted by ¥, and X} respectively, are disjoint, i.e.,

ZhﬂEﬁl

=argmax max
deDy, UEsz,eX

fj dao—xj
b, LA (00)0)

Nargmax max Z fi ((d,0)ys)
deD, o€ll. ,ex Dy
j fier

=0,

where (d, o), denotes the projection of the combined
assignment of d and ¢ onto the scope of f;.

First, when solving P with 7, we assume the faulty
agents B = SUS behave as follows. Agents in S exe-
cute 7 using utility function f] instead of f;. Except
for this replacement of the utility function, the agents
correctly follow the algorithm 7. On the other hand,
agents in S do not execute any operation. Let e be an
execution of the entire system, i.e., the sequence of
message transmissions. By our assumption regarding
m, the correct agents obtain an optimal solution to
P upon termination. Specifically, the correct agents
assigned xj obtain an assignment dj € Xp,.

Next, when solving P’ with 7, we similarly assume
that agents in S’ execute 7 using utility function f;
instead of f/, while agents in S do not execute any
operation. Let ¢’ be this system execution. Since
S, ', and S partition y(f;) = v(f!), all agents in

v(fi) = ~(f]), including all faulty agents, behave
identically in both e and ¢’: agents in S execute w
with f/, agents in S’ execute 7 with f;, and agents
in S do not execute any operation. Consequently, all
other agents without knowledge of f; and f/ also ex-
ecute 7 identically in both e and ¢, as the problems
P and P’ differ only in the utility functions and sets
of faulty agents.

Therefore, the executions e and e’ are identical
when agents exchange messages in the same order.
In this case, the correct agent assigned xj obtains
the assignment dj, € ¥, in execution e’ as well. How-
ever, since d; is not in the optimal assignment set
of P', ie., dj ¢ X}, this contradicts our assumption
about . O

B Additional Results in Exper-
imental Evaluation

This section presents additional results that com-
plement Section 6. First, we compare the solution
quality of Max-Sum and Repl-Max-Sum on identical
graph coloring problem (GCP) instances. Then, we
report a preliminary evaluation of the communication
overhead of Repl-Max-Sum on a small testbed.

B.1 Comparison of Solution Quality
on Graph Coloring Problems

To provide a more precise comparison between algo-
rithms, we analyze their outcomes on identical in-
stances in GCPs. For each experimental condition,
both algorithms solved the same 50 instances. We
quantify the difference in solution quality (measured
by the number of constraint violations) using the fol-
lowing metric:

A= CVMS - CVRepla

where CVyg and CVRep1 denote the number of con-
straint violations obtained by Max-Sum and Repl-
Max-Sum, respectively. A positive A indicates that
Max-Sum produced a solution with more constraint
violations.

10
°
o / =
0 |-®
0 2 4 6 8
Number of Faulty Agents (b)
Figure 1: Difference of Constraint Violations on
GCPs (n = 24)

1 Medians and IQRs of differences of constraint
violations between Max-Sum and Repl-Max-Sum on
GCPs when n = 24.

Table 1: Distribution of A (n = 24)

|b=0 b=2 b=4 b=6 b=38
A <0 0 3 1 0 3
A=0 50 5 3 1 1
A>0 0 42 46 49 46

We first fixed n = 24 and varied the number of
faulty agents b € {0,2,4,6,8}. We evaluated the dis-
tribution of A across the 50 instances in terms of
medians and interquartile ranges (IQRs) as shown in
Figure 1. As described in Section 6, when no faults
are present (b = 0), Repl-Max-Sum returns identical
solutions to Max-Sum, and thus A is 0 for all in-
stances. In contrast, when faults are present (b > 0),
the IQR of A never falls below 3 and the median is at
least 6. In other words, compared to Repl-Max-Sum,
Max-Sum incurs at least 3 additional violations on at
least 75% of instances and at least 6 additional viola-
tions on at least 50% of instances. Moreover, both the
median and IQR of A increase approximately mono-
tonically with b, indicating that the degradation of
Max-Sum intensifies as the number of faulty agents
grows, while Repl-Max-Sum continues to mask their
impact.

Additionally, Table 1 presents the distribution of
A when n = 24 and b € {0,2,4,6,8}. As shown in
the table, A is positive, i.e., Repl-Max-Sum achieved
better solutions than Max-Sum, in over 80% in-
stances with b = 2 and in over 90%instances with
b € {2,4,6,8}. These results highlight the superior-

“ /Q
°
<10 —
o/
0
12 24 36 48
Total Number of Agents (n)
Figure 2: Difference of Constraint Violations on

GCPs (b=n/3)
1 Medians and IQRs of differences of constraint
violations between Max-Sum and Repl-Max-Sum on
GCPs when b =n/3.

Table 2: Distribution of A (b =n/3)

|n=12 n=24 n=236 n=48
A <O 5 3 0 0
A=0 2 1 1 0
A>0 43 46 49 50

ity of Repl-Max-Sum.

We also observed rare exceptions: for each b > 0,
at most three instances exhibited fewer violations
with Max-Sum than with Repl-Max-Sum. This phe-
nomenon can be attributed to the incompleteness
of (Repl-)Max-Sum; random messages generated by
faulty agents can occasionally and inadvertently steer
the updates of the ¢ and r messages in a favorable di-
rection for Max-Sum. However, in our truck appoint-
ment scheduling (TAS) experiments, Repl-Max-Sum
consistently outperformed Max-Sum on all instances
when faults were present.

Next, we fixed the fault scale at b = n/3 and varied
the number of agents n € {12, 24, 36,48}, showing the
results in Figure 2 and Table 2. As presented in the
figure, for all n, the IQR of A remains strictly posi-
tive, demonstrating that Repl-Max-Sum yields better
solutions than Max-Sum on the majority of instances.
Furthermore, A increases monotonically with n. In
particular, for n = 48, the median of A reaches 18,
underscoring the widening performance gap and the
pronounced advantage of Repl-Max-Sum as problem
size grows.

B.2 Preliminary Experiments Re-
garding Communication Over-
head

Repl-Max-Sum incurs a higher communication cost
than Max-Sum. Specifically, in the experimental
configuration, Repl-Max-Sum assigns three replicas
to each node, which multicast across replica sets
of neighboring nodes. Consequently, the number of
messages is theoretically amplified by approximately
3.3 =9 compared to Max-Sum, a trend consistent
with the results in Section 6. However, multiple repli-
cas assigned to an agent can be processed in parallel,
and messages are small (in our GCP implementation,
each message is below 256 bytes). Hence, the wall-
clock runtime need not scale proportionally to the
increase in message count.

To examine this hypothesis, we conducted a small
test on two physical servers (denoted S1 and S2) con-
nected over the Internet. We repeated the following
round-trip for 1000 rounds:

1. S1 sends N messages;

2. after receiving N messages, S2 replies with N
messages;

3. after receiving IV replies, S1 proceeds to the next
round.

This procedure emulates the parallel per-replica pro-
cessing and synchronous message passing used in
(Repl-)Max-Sum. The experiment was implemented
in Python with PyZMQ (Python bindings for Ze-
roMQ, a well-known messaging library). To mirror
the difference in message multiplicity between Max-
Sum and Repl-Max-Sum, we compared two condi-
tions, N =1 and N = 9.

Over five trials per condition, the average comple-
tion time for 1000 rounds was 13.0 seconds (stan-
dard deviation 0.264) for N = 1 and 23.2 seconds
(standard deviation 0.635) for N = 9. Thus, even
with nine times as many messages, runtime increased
by less than a factor of two. These results suggest
that although Repl-Max-Sum increases the number
of messages quadratically with the number of repli-
cas per node, practical runtime overhead can be sub-

stantially mitigated by parallelism and small message
size.

Nevertheless, the actual overhead in deployment
depends on multiple factors, including the cost of lo-
cal optimization processes at nodes and network con-
ditions. A rigorous evaluation should therefore be
conducted on the target system itself, which we leave
for future work.

