
Flaws of Termination and Optimality in ADOPT-based Algorithms
(Appendices)

Koji Noshiro and Koji Hasebe
University of Tsukuba

noshiro@mas.cs.tsukuba.ac.jp, hasebe@cs.tsukuba.ac.jp

A Overview of ADOPT
ADOPT [Modi et al., 2005] is known as an asynchronous
complete algorithm to solve DCOPs. Since the messages in
ADOPT are exchanged based on a DFS pseudo-tree, ADOPT
requires constructing it in the preprocessing.

The message framework of ADOPT consists of four mes-
sages, namely VALUE, COST, THRESHOLD, and TERMI-
NATE. A VALUE message reports the current value di of
agent xi to its children and pseudo-children xc. When agent
xi receives a VALUE message from its parent or pseudo-
parent xp, xi records the value in the message to the current
context CXi. A context of agent xi is the assignments of
variables higher than xi in the DFS pseudo-tree.

A COST message is sent from agent xi to its parent xp

and reports the current context CXi and the lower and upper
bounds of the cost for the subtree rooted at xi, denoted as LBi

and UBi, respectively. For the definition of LBi and UBi,
we define local cost δi(d,CX) for value d and context CX
of xi. This is the sum of cost functions between xi and its
higher neighbors (i.e., its parent and pseudo-parents), given
value d and context CX . Local cost δi(d,CX) is calculated
as follows:

δi(d,CX) :=
∑

(xj ,dj)∈CX

fi,j(d, dj).

LBi(d) and UBi(d) are the lower and upper bounds for value
d of agent xi, respectively, and are defined as follows:

LBi(d) := δi(d,CXi) +
∑

xc∈C(xi)

lbi(d, xc) (3)

UBi(d) := δi(d,CXi) +
∑

xc∈C(xi)

ubi(d, xc), (4)

where C(xi) is the children of xi and lbi(d, xc) and
ubi(d, xc) are the lower and upper bounds received from a
child xc through a COST message whose context contains
assignment (xi, d). In initialization, lower bounds lbi(d, xc)
and upper bounds ubi(d, xc) are set as lbi(d, xc) := 0 and
ubi(d, xc) := ∞. LBi and UBi are the lower and upper
bounds, respectively, and are defined as follows:

LBi := min
d∈Di

LBi(d) (5)

UBi := min
d∈Di

UBi(d). (6)

When agent xi receives a COST message from a child
xc, and the context in the message contains assignment
(xi, d) and is compatible with the current context CXi, xi

stores the received context, lower bound, and upper bound in
cxi(d, xc), lbi(d, xc), and ubi(d, xc), respectively. Here, two
contexts are compatible if their assignments of any variables
do not take different values. Additionally, xi also stores the
assignment (xp, dp) contained by the context in a COST mes-
sage if xp is not the neighbor of xi.

If the current context CXi becomes incompatible with
context cxi(d, xc) for value d and a child xc by receiv-
ing VALUE or COST messages, xi reinitializes the con-
text cxi(d, xc) to be empty, the lower bound lbi(d, xc) to 0,
and the upper bound ubi(d, xc) to ∞. This reinitialization
means that xi stores lower and upper bounds only for the cur-
rent context CXi, which leads to efficient space complexity.
However, reinitialization can cause an agent to recompute the
lower and upper bounds for a previous context from scratch.
Additionally, an agent may change the variable value multiple
times due to the best-first search in ADOPT.

In order to avoid changing the value many times, ADOPT
introduces a threshold that stores cost information received
from children. Agent xi maintains threshold THi and allo-
cates it to the children. thi(d, xc) represents the threshold
allocated to a child xc when xi takes value d. The thresholds
THi and thi(d, xc) of xi are updated to maintain the follow-
ing three invariants:
Definition 2 (ThresholdInvariant).

LBi ≤ THi ≤ UBi.

Definition 3 (AllocationInvariant).

THi = δi(di, CXi) +
∑

xc∈C(xi)

thi(di, xc),

where di ∈ D is the current value of xi.
Definition 4 (ChildThresholdInvariant). ∀d ∈ Di,∀xc ∈
C(xi),

lbi(d, xc) ≤ thi(d, xc) ≤ ubi(d, xc).

THi and thi(d, xc) are initialized to 0. Furthermore,
thi(d, xc) is reinitialized as well as lbi(d, xc) and ubi(d, xc)
when the current context CXi becomes incompatible with
context cxi(d, xc). A THRESHOLD message is sent from

agent xi to its children xc and reports the current context
CXi and the threshold thi(di, xc) allocated to xc for the cur-
rent value di of xi. When agent xi receives a THRESHOLD
message from its parent xp, xi stores the received threshold
in THi if the context in the message is compatible with the
current context CXi.

The threshold THi is used for the conditions for chang-
ing the variable value and termination. If the lower bound
for the current value di, represented by LBi(di), becomes
greater than the threshold THi, agent xi changes the value
to d ∈ Di that minimizes the lower bound LBi(d). The ter-
mination condition is that the threshold THi is equal to the
upper bound UBi. If the root agent xr in the DFS pseudo-
tree satisfies this condition, xr changes the value to d that
minimizes UBi(d) and sends TERMINATE messages to its
children, and then xr terminates. If non-root agent xi receives
a TERMINATE message from its parent xp and satisfies the
termination condition, xi also changes the value, sends TER-
MINATE messages, and executes termination.

The original study of ADOPT provides three properties (as
theorems in the paper) in terms of its termination and opti-
mality. Before showing the properties, we define the opti-
mal costs for the subtree rooted at agent xi given a context.
These costs are named gamma costs in [Yeoh et al., 2010],
which correspond to OPT (xi, context) in the original study
of ADOPT. The gamma costs γi(CX) and γi(d,CX) are de-
fined recursively as follows:

γi(d,CX) := δi(d,CX) +
∑

xc∈C(xi)

γi(CX ∪ {(xi, d)})

γi(CX) := min
d∈Di

γi(d,CX),

where d represents a value of xi and CX denotes a context
of xi. Three properties shown below are given in the study of
ADOPT. Property 1 shows the relations between the bounds
and the gamma cost; Property 2 implies guaranteeing the ter-
mination; and Property 3 implies guaranteeing the optimality.
Property 1. ∀xi ∈ X,LBi ≤ γi(CXi) ≤ UBi.

Property 2. ∀xi ∈ X , if the current context CXi is fixed,
then THi = UBi will eventually occur.

Property 3. ∀xi ∈ X , xi’s final threshold value THi is equal
to γi(CXi).

B Traces of Counterexamples
In this section, we show the detailed traces of the counterex-
amples in Section 3. The traces are composed of figures that
show sequences of agent actions and tables that show states
of agents. In a figure, shaded agents (i.e., nodes) receive mes-
sages, process them, and send new messages. Received mes-
sages are represented by arrows whose heads are painted in
black, while sent messages are represented by arrows whose
heads are not painted. We omit some messages, e.g., most
THRESHOLD messages, that are not crucial. Additionally,
tables show the states of agents when they complete process-
ing the received messages, and some trivial states, e.g., the
current context of a root agent, are omitted.

B.1 Counterexample to Termination
Figures 7–33 and Tables 2–12 show the trace of the coun-
terexample to termination, described in 3.1.

VALUE

VALUE

VALUE

VALUE

THRESHOLD
(second or subsequent
iteration)

Figure 7: Step 1 (1). x1 sends VALUE messages to its children and
pseudo-children x3, x4, x5, and x6.

VALUECOST

Figure 8: Step 1 (2). x4 receives the VALUE message and computes
the lower bound using the updated context CX4 ∋ (x1, 0), and thus
LB4 = 5. Then x4 reports the lower bound to x3 by sending a
COST message.

Variables Step 0 Step 1 (1) Step 1 (2)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(0, x2) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x2) ∞ ∞ ∞
TH0 0 0 0
th0(0, x1) 0 0 0
th0(0, x2) 0 0 0

x1

d1 0 0 0
LB1 0 0 0
lb1(0, x3) 0 0 0
lb1(0, x5) 0 0 0
lb1(1, x3) 0 0 0
lb1(1, x5) 0 0 0
UB1 ∞ ∞ ∞
ub1(0, x3) ∞ ∞ ∞
ub1(0, x5) ∞ ∞ ∞
ub1(1, x3) ∞ ∞ ∞
ub1(1, x5) ∞ ∞ ∞
TH1 0 0 0

x3

d3 0 0 0
CX3 {} {} {}
cx3(0, x4) {} {} {}
LB3 0 0 0
lb3(0, x4) 0 0 0
UB3 ∞ ∞ ∞
ub3(0, x4) ∞ ∞ ∞

x4

d4 0 0 0
CX4 {} {} {(x1,0),

(x3,0)}
LB4 0 0 5
UB4 ∞ ∞ 5

x5

d5 0 0 0
CX5 {} {} {}
cx5(0, x6) {} {} {}
LB5 0 0 0
lb5(0, x6) 0 0 0
UB5 ∞ ∞ ∞
ub5(0, x6) ∞ ∞ ∞

x6

d6 0 0 0
CX6 {} {} {}
LB6 0 0 0
UB6 ∞ ∞ ∞

Table 2: States of agents in Steps 0–1 (2).

COST

COST

VALUE

Figure 9: Step 1 (3). x3 receives the VALUE message from x1

and the COST message from x4 and computes the lower bound as
LB3 = 5. Then x3 sends a COST message with CX3 ∋ (x1, 0)
and LB3 = 5 to x1.

VALUE

VALUE

VALUE

VALUE

COST

Figure 10: Step 1 (4). After x1 receives the COST message, x1

updates LB1(0) to 5. Since LB1(0) = 5 > TH1 = 0, x1 changes
its value d1 to 1 and sends VALUE messages to its children and
pseudo-children.

Variables Step 1 (3) Step 1 (4)

x0

d0 0 0
LB0 0 0
lb0(0, x1) 0 0
lb0(0, x2) 0 0
UB0 ∞ ∞
ub0(0, x1) ∞ ∞
ub0(0, x2) ∞ ∞
TH0 0 0
th0(0, x1) 0 0
th0(0, x2) 0 0

x1

d1 0 1
LB1 0 0
lb1(0, x3) 0 5
lb1(0, x5) 0 0
lb1(1, x3) 0 0
lb1(1, x5) 0 0
UB1 ∞ ∞
ub1(0, x3) ∞ 5
ub1(0, x5) ∞ ∞
ub1(1, x3) ∞ ∞
ub1(1, x5) ∞ ∞
TH1 0 0

x3

d3 0 0
CX3 {(x1,0)} {(x1, 0)}
cx3(0, x4) {(x1,0)} {(x1, 0)}
LB3 5 5
lb3(0, x4) 5 5
UB3 5 5
ub3(0, x4) 5 5

x4

d4 0 0
CX4 {(x1, 0),

(x3, 0)}
{(x1, 0),
(x3, 0)}

LB4 5 5
UB4 5 5

x5

d5 0 0
CX5 {} {}
cx5(0, x6) {} {}
LB5 0 0
lb5(0, x6) 0 0
UB5 ∞ ∞
ub5(0, x6) ∞ ∞

x6

d6 0 0
CX6 {} {}
LB6 0 0
UB6 ∞ ∞

Table 3: States of agents in Steps 1 (3)–1 (4).

VALUE

COST

Figure 11: Step 2 (1). x5 receives the VALUE messages from x1

and sends a COST message to x1, but this COST message does not
affect the bounds of x1 because LB5 = 0 and UB5 = ∞, which
are the initial bounds.

VALUE
COST

Figure 12: Step 2 (2). Similar to the procedure in Step 1, x4 receives
and sends messages.

VALUE

COST

COST

Figure 13: Step 2 (3). Similar to the procedure in Step 1, x3 receives
and sends messages.

Variables Step 2 (1) Step 2 (2) Step 2 (3)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(0, x2) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x2) ∞ ∞ ∞
TH0 0 0 0
th0(0, x1) 0 0 0
th0(0, x2) 0 0 0

x1

d1 1 1 1
LB1 0 0 0
lb1(0, x3) 5 5 5
lb1(0, x5) 0 0 0
lb1(1, x3) 0 0 0
lb1(1, x5) 0 0 0
UB1 ∞ ∞ ∞
ub1(0, x3) 5 5 5
ub1(0, x5) ∞ ∞ ∞
ub1(1, x3) ∞ ∞ ∞
ub1(1, x5) ∞ ∞ ∞
TH1 0 0 0

x3

d3 0 0 0
CX3 {(x1, 0)} {(x1, 0)} {(x1,1)}
cx3(0, x4) {(x1, 0)} {(x1, 0)} {(x1,1)}
UB3 5 5 6
lb3(0, x4) 5 5 6
UB3 5 5 6
ub3(0, x4) 5 5 6

x4

d4 0 0 0
CX4 {(x1, 0),

(x3, 0)}
{(x1,1),
(x3,0)}

{(x1, 1),
(x3, 0)}

LB4 5 6 6
UB4 5 6 6

x5

d5 0 0 0
CX5 {} {} {}
cx5(0, x6) {} {} {}
LB5 0 0 0
lb5(0, x6) 0 0 0
UB5 ∞ ∞ ∞
ub5(0, x6) ∞ ∞ ∞

x6

d6 0 0 0
CX6 {} {} {}
LB6 0 0 0
UB6 ∞ ∞ ∞

Table 4: States of agents in Steps 2 (1)–2 (3).

VALUE

VALUE

VALUE

VALUE

COST COST

Figure 14: Step 2 (4). Similar to the procedure in Step 1, x1 re-
ceives and sends messages, and then x1 updates the lower bound
as LB1(1) = 6. Additionally, the threshold of x1 increases as
TH1 = LB1 = min{LB1(0), LB1(1)} = 5 because of Thresh-
oldInvariant. Since LB1(1) = 6 > TH1 = 5, x1 changes its value
d1 back to 0.

VALUE COST

Figure 15: Step 3 (1). Similar cost calculations and value changes
are performed in x6.

VALUE

COST

COST

Figure 16: Step 3 (2). Similar cost calculations and value changes
are performed in x5.

Variables Step 2 (4) Step 3 (1) Step 3 (2)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(0, x2) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x2) ∞ ∞ ∞
TH0 0 0 0
th0(0, x1) 0 0 0
th0(0, x2) 0 0 0

x1

d1 0 0 0
LB1 5 5 5
lb1(0, x3) 5 5 5
lb1(0, x5) 0 0 0
lb1(1, x3) 6 6 6
lb1(1, x5) 0 0 0
UB1 ∞ ∞ ∞
ub1(0, x3) 5 5 5
ub1(0, x5) ∞ ∞ ∞
ub1(1, x3) 6 6 6
ub1(1, x5) ∞ ∞ ∞
TH1 5 5 5

x3

d3 0 0 0
CX3 {(x1, 1)} {(x1, 1)} {(x1, 1)}
cx3(0, x4) {(x1, 1)} {(x1, 1)} {(x1, 1)}
UB3 6 6 6
lb3(0, x4) 6 6 6
UB3 6 6 6
ub3(0, x4) 6 6 6

x4

d4 0 0 0
CX4 {(x1, 1),

(x3, 0)}
{(x1, 1),
(x3, 0)}

{(x1, 1),
(x3, 0)}

LB4 6 6 6
UB4 6 6 6

x5

d5 0 0 0
CX5 {} {} {(x1,0)}
cx5(0, x6) {} {} {(x1,0)}
LB5 0 0 2
lb5(0, x6) 0 0 2
UB5 ∞ ∞ 2
ub5(0, x6) ∞ ∞ 2

x6

d6 0 0 0
CX6 {} {(x1,0),

(x5,0)}
{(x1, 0),
(x5, 0)}

LB6 0 2 2
UB6 ∞ 2 2

Table 5: States of agents in Steps 2 (4)–3 (2).

VALUE

VALUE

VALUE

VALUE

COST

Figure 17: Step 3 (3). Similar cost calculations and value changes
are performed in x1.

VALUE COST

Figure 18: Step 3 (4). Similar cost calculations and value changes
are performed in x6.

VALUE

COST

COST

Figure 19: Step 3 (5). Similar cost calculations and value changes
are performed in x5.

Variables Step 3 (3) Step 3 (4) Step 3 (5)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(0, x2) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x2) ∞ ∞ ∞
TH0 0 0 0
th0(0, x1) 0 0 0
th0(0, x2) 0 0 0

x1

d1 1 1 1
LB1 6 6 6
lb1(0, x3) 5 5 5
lb1(0, x5) 2 2 2
lb1(1, x3) 6 6 6
lb1(1, x5) 0 0 0
UB1 7 7 7
ub1(0, x3) 5 5 5
ub1(0, x5) 2 2 2
ub1(1, x3) 6 6 6
ub1(1, x5) ∞ ∞ ∞
TH1 6 6 6

x3

d3 0 0 0
CX3 {(x1, 1)} {(x1, 1)} {(x1, 1)}
cx3(0, x4) {(x1, 1)} {(x1, 1)} {(x1, 1)}
LB3 6 6 6
lb3(0, x4) 6 6 6
UB3 6 6 6
ub3(0, x4) 6 6 6

x4

d4 0 0 0
CX4 {(x1, 1),

(x3, 0)}
{(x1, 1),
(x3, 0)}

{(x1, 1),
(x3, 0)}

LB4 6 6 6
UB4 6 6 6

x5

d5 0 0 0
CX5 {(x1, 0)} {(x1, 0)} {(x1,1)}
cx5(0, x6) {(x1, 0)} {(x1, 0)} {(x1,1)}
LB5 2 2 3
lb5(0, x6) 2 2 3
UB5 2 2 3
ub5(0, x6) 2 2 3

x6

d6 0 0 0
CX6 {(x1, 0),

(x5, 0)}
{(x1,1),
(x5,0)}

{(x1, 1),
(x5, 0)}

LB6 2 3 3
UB6 2 3 3

Table 6: States of agents in Steps 3 (3)–3 (5).

VALUE

VALUE

VALUE

VALUE

COST

COST

Figure 20: Step 3 (6). Similar cost calculations and value changes
are performed in x1. After the cost calculation, x1 sends VALUE
messages with the current value d1 = 0 to the lower neighbors and
a COST message with LB1 = 7 to x0.

COST

 THRESHOLD THRESHOLD

Figure 21: Step 3 (7). x0 receives the COST message and then
increases LB0, TH0, and th0(0, x1) to 7.

VALUE

2. VALUE

1. VALUE

3. VALUE

COST COST

Figure 22: Step 4. x3 receives the three VALUE messages from x1,
in which the values are d1 = 0, d1 = 1, and d1 = 0, in the order
of sending. When x3 processes the first VALUE message, the lower
bound of x3 is reinitialized as LB3 = LB3(0) = lb3(0, x4) = 0
since context cx3(0, x4) ∋ (x1, 1), received from x4 through the
COST message, is incompatible with the updated context CX3 ∋
(x1, 0). After x3 processes the remaining messages, x3 sends two
types of COST messages to x1, i.e., the message with LB3 = 0 and
CX3 = {(x1, 0)} and the message with LB3 = 0 and CX3 =
{(x1, 1)}. Similarly, x5 receives the VALUE message with d1 = 0
from x1 and reinitializes the bounds. Additionally, x5 sends a COST
message with LB5 = 0 and CX5 = {(x1, 0)} to x1.

Variables Step 3 (6) Step 3 (7) Step 4

x0

d0 0 0 0
LB0 0 7 7
lb0(0, x1) 0 7 7
lb0(0, x2) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ 7 7
ub0(0, x2) ∞ ∞ ∞
TH0 0 7 7
th0(0, x1) 0 7 7
th0(0, x2) 0 0 0

x1

d1 0 0 0
LB1 7 7 7
lb1(0, x3) 5 5 5
lb1(0, x5) 2 2 2
lb1(1, x3) 6 6 6
lb1(1, x5) 3 3 3
UB1 7 7 7
ub1(0, x3) 5 5 5
ub1(0, x5) 2 2 2
ub1(1, x3) 6 6 6
ub1(1, x5) 3 3 3
TH1 7 7 7

x3

d3 0 0 0
CX3 {(x1, 1)} {(x1, 1)} {(x1,0)}
cx3(0, x4) {(x1, 1)} {(x1, 1)} {}
LB3 6 6 0
lb3(0, x4) 6 6 0
UB3 6 6 ∞
ub3(0, x4) 6 6 ∞

x4

d4 0 0 0
CX4 {(x1, 1),

(x3, 0)}
{(x1, 1),
(x3, 0)}

{(x1, 1),
(x3, 0)}

LB4 6 6 6
UB4 6 6 6

x5

d5 0 0 0
CX5 {(x1, 1)} {(x1, 1)} {(x1,0)}
cx5(0, x6) {(x1, 1)} {(x1, 1)} {}
LB5 3 3 0
lb5(0, x6) 3 3 0
UB5 3 3 ∞
ub5(0, x6) 3 3 ∞

x6

d6 0 0 0
CX6 {(x1, 1),

(x5, 0)}
{(x1, 1),
(x5, 0)}

{(x1, 1),
(x5, 0)}

LB6 3 3 3
UB6 3 3 3

Table 7: States of agents in Steps 3 (6)–4.

VALUE

VALUE

VALUE

VALUE

1. COST

2. COST

COST

COST

Figure 23: Step 5 (1). x1 receives the COST messages from x3

and x5 and updates the lower bounds as LB1(0) = lb1(0, x3) +
lb1(0, x5) = 0, LB1(1) = lb1(1, x3) + lb1(1, x5) = 3. Thus, x1

obtains the lower bound as LB1 = 0 and keeps the value d1 = 0.
Additionally, x1 sends a COST message with LB1 = 0 to x0.

COST

 THRESHOLD THRESHOLD

Figure 24: Step 5 (2). x0 receives the COST message from x1

and updates the lower bound as LB0 = LB0(0) = lb0(0, x1) +
lb0(0, x2) = 0. Although LB0 decreases, the thresholds for the
children are kept as th0(0, x1) = 7 and th0(0, x2) = 0.

Variables Step 5 (1) Step 5 (2)

x0

d0 0 0
LB0 7 0
lb0(0, x1) 7 0
lb0(0, x2) 0 0
UB0 ∞ ∞
ub0(0, x1) 7 ∞
ub0(0, x2) ∞ ∞
TH0 7 7
th0(0, x1) 7 7
th0(0, x2) 0 0

x1

d1 0 0
LB1 0 0
lb1(0, x3) 0 0
lb1(0, x5) 0 0
lb1(1, x3) 0 0
lb1(1, x5) 3 3
UB1 ∞ ∞
ub1(0, x3) ∞ ∞
ub1(0, x5) ∞ ∞
ub1(1, x3) ∞ ∞
ub1(1, x5) 3 3
TH1 7 7

x3

d3 0 0
CX3 {(x1, 0)} {(x1, 0)}
cx3(0, x4) {} {}
LB3 0 0
lb3(0, x4) 0 0
UB3 ∞ ∞
ub3(0, x4) ∞ ∞

x4

d4 0 0
CX4 {(x1, 1),

(x3, 0)}
{(x1, 1),
(x3, 0)}

LB4 6 6
UB4 6 6

x5

d5 0 0
CX5 {(x1, 0)} {(x1, 0)}
cx5(0, x6) {} {}
LB5 0 0
lb5(0, x6) 0 0
UB5 ∞ ∞
ub5(0, x6) ∞ ∞

x6

d6 0 0
CX6 {(x1, 1),

(x5, 0)}
{(x1, 1),
(x5, 0)}

LB6 3 3
UB6 3 3

Table 8: States of agents in Steps 5 (1)–5 (2).

VALUE

VALUE

VALUE

VALUE

THRESHOLD

Figure 25: Step 6 (1). The same process is performed in the subtree
rooted at x2.

VALUE
COST

Figure 26: Step 6 (2). The same process is performed in the subtree
rooted at x2.

Variables Step 6 (1) Step 6 (2)

x0

d0 0 0
LB0 0 0
lb0(0, x1) 0 0
lb0(0, x2) 0 0
UB0 ∞ ∞
ub0(0, x1) ∞ ∞
ub0(0, x2) ∞ ∞
TH0 7 7
th0(0, x1) 7 7
th0(0, x2) 0 0

x2

d2 0 0
LB2 0 0
lb2(0, x7) 0 0
lb2(0, x9) 0 0
lb2(1, x7) 0 0
lb2(1, x9) 0 0
UB2 ∞ ∞
ub2(0, x7) ∞ ∞
ub2(0, x9) ∞ ∞
ub2(1, x7) ∞ ∞
ub2(1, x9) ∞ ∞
TH2 0 0

x7

d7 0 0
CX7 {} {}
cx7(0, x8) {} {}
LB7 0 0
lb7(0, x8) 0 0
UB7 ∞ ∞
ub7(0, x8) ∞ ∞

x8

d8 0 0
CX8 {} {(x1,0),

(x7,0)}
LB8 0 5
UB8 ∞ 5

x9

d9 0 0
CX9 {} {}
cx9(0, x10) {} {}
LB9 0 0
lb9(0, x10) 0 0
UB9 ∞ ∞
ub9(0, x10) ∞ ∞

x10

d10 0 0
CX10 {} {}
LB10 0 0
UB10 ∞ ∞

Table 9: States of agents in Steps 6 (1)–6 (2).

COST

COST

VALUE

Figure 27: Step 6 (3). The same process is performed in the subtree
rooted at x2.

VALUE

VALUE

VALUE

VALUE

COST

Figure 28: Step 6 (4). The same process is performed in the subtree
rooted at x2.

Variables Step 6 (3) Step 6 (4)

x0

d0 0 0
LB0 0 0
lb0(0, x1) 0 0
lb0(0, x2) 0 0
UB0 ∞ ∞
ub0(0, x1) ∞ ∞
ub0(0, x2) ∞ ∞
TH0 7 7
th0(0, x1) 7 7
th0(0, x2) 0 0

x2

d2 0 1
LB2 0 0
lb2(0, x7) 0 5
lb2(0, x9) 0 0
lb2(1, x7) 0 0
lb2(1, x9) 0 0
UB2 ∞ ∞
ub2(0, x7) ∞ 5
ub2(0, x9) ∞ ∞
ub2(1, x7) ∞ ∞
ub2(1, x9) ∞ ∞
TH2 0 0

x7

d7 0 0
CX7 {(x1,0)} {(x1, 0)}
cx7(0, x8) {(x1,0)} {(x1, 0)}
LB7 5 5
lb7(0, x8) 5 5
UB7 5 5
ub7(0, x8) 5 5

x8

d8 0 0
CX8 {(x1, 0),

(x7, 0)}
{(x1, 0),
(x7, 0)}

LB8 5 5
UB8 5 5

x9

d9 0 0
CX9 {} {}
cx9(0, x10) {} {}
LB9 0 0
lb9(0, x10) 0 0
UB9 ∞ ∞
ub9(0, x10) ∞ ∞

x10

d10 0 0
CX10 {} {}
LB10 0 0
UB10 ∞ ∞

Table 10: States of agents in Steps 6 (3)–6 (4).

VALUE

COST

Figure 29: Step 6 (5). The same process is performed in the subtree
rooted at x2.

VALUECOST

Figure 30: Step 6 (6). The same process is performed in the subtree
rooted at x2.

VALUE

COST

COST

Figure 31: Step 6 (7). The same process is performed in the subtree
rooted at x2.

Variables Step 6 (5) Step 6 (6) Step 6 (7)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(0, x2) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x2) ∞ ∞ ∞
TH0 7 7 7
th0(0, x1) 7 7 7
th0(0, x2) 0 0 0

x2

d2 1 1 1
LB2 0 0 0
lb2(0, x7) 5 5 5
lb2(0, x9) 0 0 0
lb2(1, x7) 0 0 0
lb2(1, x9) 0 0 0
UB2 ∞ ∞ ∞
ub2(0, x7) 5 5 5
ub2(0, x9) ∞ ∞ ∞
ub2(1, x7) ∞ ∞ ∞
ub2(1, x9) ∞ ∞ ∞
TH2 0 0 0

x7

d7 0 0 0
CX7 {(x1, 0)} {(x1, 0)} {(x1,1)}
cx7(0, x8) {(x1, 0)} {(x1, 0)} {(x1,1)}
LB7 5 5 6
lb7(0, x8) 5 5 6
UB7 5 5 6
ub7(0, x8) 5 5 6

x8

d8 0 0 0
CX8 {(x1, 0),

(x7, 0)}
{(x1,1),
(x7,0)}

{(x1, 1),
(x7, 0)}

LB8 5 6 6
UB8 5 6 6

x9

d9 0 0 0
CX9 {} {} {}
cx9(0, x10) {} {} {}
LB9 0 0 0
lb9(0, x10) 0 0 0
UB9 ∞ ∞ ∞
ub9(0, x10) ∞ ∞ ∞

x10

d10 0 0 0
CX10 {} {} {}
LB10 0 0 0
UB10 ∞ ∞ ∞

Table 11: States of agents in Steps 6 (5)–6 (7).

VALUE

VALUE

VALUE

VALUE

COST COST

Figure 32: Step 6 (8). The same process is performed in the subtree
rooted at x2.

VALUE COST

Figure 33: Step 6 (9). The same process is performed in the subtree
rooted at x2.

VALUE

COST

COST

Figure 34: Step 6 (10). The same process is performed in the subtree
rooted at x2.

Variables Step 6 (8) Step 6 (9) Step 6 (10)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(0, x2) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x2) ∞ ∞ ∞
TH0 7 7 7
th0(0, x1) 7 7 7
th0(0, x2) 0 0 0

x2

d2 0 0 0
LB2 5 5 5
lb2(0, x7) 5 5 5
lb2(0, x9) 0 0 0
lb2(1, x7) 6 6 6
lb2(1, x9) 0 0 0
UB2 ∞ ∞ ∞
ub2(0, x7) 5 5 5
ub2(0, x9) ∞ ∞ ∞
ub2(1, x7) 6 6 6
ub2(1, x9) ∞ ∞ ∞
TH2 5 5 5

x7

d7 0 0 0
CX7 {(x1, 1)} {(x1, 1)} {(x1, 1)}
cx7(0, x8) {(x1, 1)} {(x1, 1)} {(x1, 1)}
LB7 6 6 6
lb7(0, x8) 6 6 6
UB7 6 6 6
ub7(0, x8) 6 6 6

x8

d8 0 0 0
CX8 {(x1, 1),

(x7, 0)}
{(x1, 1),
(x7, 0)}

{(x1, 1),
(x7, 0)}

LB8 6 6 6
UB8 6 6 6

x9

d9 0 0 0
CX9 {} {} {(x2,0)}
cx9(0, x10) {} {} {(x2,0)}
LB9 0 0 2
lb9(0, x10) 0 0 2
UB9 ∞ ∞ 2
ub9(0, x10) ∞ ∞ 2

x10

d10 0 0 0
CX10 {} {(x1,0),

(x9,0)}
{(x1, 0),
(x9, 0)}

LB10 0 2 2
UB10 ∞ 2 2

Table 12: States of agents in Steps 6 (8)–6 (10).

VALUE

VALUE

VALUE

VALUE

COST

Figure 35: Step 6 (11). The same process is performed in the subtree
rooted at x2.

VALUE COST

Figure 36: Step 6 (12). The same process is performed in the subtree
rooted at x2.

VALUE

COST

COST

Figure 37: Step 6 (13). The same process is performed in the subtree
rooted at x2.

Variables Step 6 (11) Step 6 (12) Step 6 (13)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(0, x2) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x2) ∞ ∞ ∞
TH0 7 7 7
th0(0, x1) 7 7 7
th0(0, x2) 0 0 0

x2

d2 1 1 1
LB2 6 6 6
lb2(0, x7) 5 5 5
lb2(0, x9) 2 2 2
lb2(1, x7) 6 6 6
lb2(1, x9) 0 0 0
UB2 7 7 7
ub2(0, x7) 5 5 5
ub2(0, x9) 2 2 2
ub2(1, x7) 6 6 6
ub2(1, x9) ∞ ∞ ∞
TH2 6 6 6

x7

d7 0 0 0
CX7 {(x1, 1)} {(x1, 1)} {(x1, 1)}
cx7(0, x8) {(x1, 1)} {(x1, 1)} {(x1, 1)}
LB7 6 6 6
lb7(0, x8) 6 6 6
UB7 6 6 6
ub7(0, x8) 6 6 6

x8

d8 0 0 0
CX8 {(x1, 1),

(x7, 0)}
{(x1, 1),
(x7, 0)}

{(x1, 1),
(x7, 0)}

LB8 6 6 6
UB8 6 6 6

x9

d9 0 0 0
CX9 {(x1, 0)} {(x1, 0)} {(x1,1)}
cx9(0, x10) {(x1, 0)} {(x1, 0)} {(x1,1)}
LB9 2 2 3
lb9(0, x10) 2 2 3
UB9 2 2 3
ub9(0, x10) 2 2 3

x10

d10 0 0 0
CX10 {(x1, 0),

(x9, 0)}
{(x1,1),
(x9,0)}

{(x1, 1),
(x9, 0)}

LB10 2 3 3
UB10 2 3 3

Table 13: States of agents in Steps 6 (11)–6 (13).

VALUE

VALUE

VALUE

VALUE

COST

COST

Figure 38: Step 6 (14). The same process is performed in the subtree
rooted at x2.

COST

 THRESHOLD THRESHOLD

Figure 39: Step 6 (15). The same process is performed in the subtree
rooted at x2.

VALUE

COST COST

2. VALUE

1. VALUE

3. VALUE

Figure 40: Step 6 (16). The same process is performed in the subtree
rooted at x2.

Variables Step 6 (14) Step 6 (15) Step 6 (16)

x0

d0 0 0 0
LB0 0 7 7
lb0(0, x1) 0 0 0
lb0(0, x2) 0 7 7
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x2) ∞ 7 7
TH0 7 7 7
th0(0, x1) 7 0 0
th0(0, x2) 0 7 7

x2

d2 0 0 0
LB2 7 7 7
lb2(0, x7) 5 5 5
lb2(0, x9) 2 2 2
lb2(1, x7) 6 6 6
lb2(1, x9) 3 3 3
UB2 7 7 7
ub2(0, x7) 5 5 5
ub2(0, x9) 2 2 2
ub2(1, x7) 6 6 6
ub2(1, x9) 3 3 3
TH2 7 7 7

x7

d7 0 0 0
CX7 {(x1, 1)} {(x1, 1)} {(x1,0)}
cx7(0, x8) {(x1, 1)} {(x1, 1)} {}
LB7 6 6 0
lb7(0, x8) 6 6 0
UB7 6 6 ∞
ub7(0, x8) 6 6 ∞

x8

d8 0 0 0
CX8 {(x1, 1),

(x7, 0)}
{(x1, 1),
(x7, 0)}

{(x1, 1),
(x7, 0)}

LB8 6 6 6
UB8 6 6 6

x9

d9 0 0 0
CX9 {(x1, 1)} {(x1, 1)} {(x1,0)}
cx9(0, x10) {(x1, 1)} {(x1, 1)} {}
LB9 3 3 0
lb9(0, x10) 3 3 0
UB9 3 3 ∞
ub9(0, x10) 3 3 ∞

x10

d10 0 0 0
CX10 {(x1, 1),

(x9, 0)}
{(x1, 1),
(x9, 0)}

{(x1, 1),
(x9, 0)}

LB10 3 3 3
UB10 3 3 3

Table 14: States of agents in Steps 6 (14)–6 (16).

VALUE
VALUE

COST

VALUE VALUE

COST

1. COST

2. COST

Figure 41: Step 6 (17). The same process is performed in the subtree
rooted at x2.

COST

 THRESHOLD THRESHOLD

Figure 42: Step 6 (18). The same process is performed in the subtree
rooted at x2.

Variables Step 6 (17) Step 6 (18)

x0

d0 0 0
LB0 7 0
lb0(0, x1) 0 0
lb0(0, x2) 7 0
UB0 ∞ ∞
ub0(0, x1) ∞ ∞
ub0(0, x2) 7 ∞
TH0 7 7
th0(0, x1) 0 0
th0(0, x2) 7 7

x2

d2 0 0
LB2 0 0
lb2(0, x7) 0 0
lb2(0, x9) 0 0
lb2(1, x7) 0 0
lb2(1, x9) 3 3
UB2 ∞ ∞
ub2(0, x7) ∞ ∞
ub2(0, x9) ∞ ∞
ub2(1, x7) ∞ ∞
ub2(1, x9) 3 3
TH2 7 7

x7

d7 0 0
CX7 {(x1, 0)} {(x1, 0)}
cx7(0, x8) {} {}
LB7 0 0
lb7(0, x8) 0 0
UB7 ∞ ∞
ub7(0, x8) ∞ ∞

x8

d8 0 0
CX8 {(x1, 1),

(x7, 0)}
{(x1, 1),
(x7, 0)}

LB8 6 6
UB8 6 6

x9

d9 0 0
CX9 {(x1, 0)} {(x1, 0)}
cx9(0, x10) {} {}
LB9 0 0
lb9(0, x10) 0 0
UB9 ∞ ∞
ub9(0, x10) ∞ ∞

x10

d10 0 0
CX10 {(x1, 1),

(x9, 0)}
{(x1, 1),
(x9, 0)}

LB10 3 3
UB10 3 3

Table 15: States of agents in Steps 6 (17)–6 (18).

B.2 Counterexample to Optimality Caused by
Initialization

Figures 43–46 and Tables 16–17 show the trace of the coun-
terexample to optimality caused by initialization, described
in 3.2.

VALUE

VALUE

VALUE

Figure 43: Step 1 (1). Agents send VALUE messages to their chil-
dren and pseudo-children.

VALUE
COST

Figure 44: Step 1 (2). x2 receives the VALUE message only from
its parent x1, which means that the messages from the pseudo-
parent x0 are delayed. Here, x2 updates the current context as
CX2 = {(x1, 0)}. From the definition of the local cost δi(d,CX),
x2 computes the local costs as δ2(0, {(x1, 0)}) = f1,2(0, 0) = 0
and δ2(1, {(x1, 0)}) = f1,2(0, 1) = 0. Thus, the bounds of x2 are
obtained as LB2 = UB2 = 0. Then x2 sends a COST message
with LB2 = UB2 = 0 to x1.

VALUE

COST

COST

Figure 45: Step 2 (1). After x1 receives the VALUE message from
x0 and the COST message from x2, x1 computes the bounds as
LB1 = UB1 = 0.

COST

Figure 46: Step 2 (2). x0 updates the bounds as LB0(0) =
UB0(0) = 0 through the COST message sent from x1. Since
LB0 = TH0 = UB0 = UB0(0) = 0 due to ThresholdInvariant,
x0 keeps its value as d0 = 0 and satisfies the termination condition.
However, the variable value d0 = 0 is suboptimal.

Variables Step 0 Step 1 (1) Step 1 (2)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(1, x1) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(1, x1) ∞ ∞ ∞
TH0 0 0 0

x1

d1 0 0 0
CX1 {} {} {}
cx1(0, x2) {} {} {}
LB1 0 0 0
lb1(0, x2) 0 0 0
UB1 ∞ ∞ ∞
ub1(0, x2) ∞ ∞ ∞
TH1 0 0 0

x2

d2 0 0 0
CX2 {} {} {(x1,0)}
LB2 0 0 0
UB2 ∞ ∞ 0

Table 16: States of agents in Steps 0–1 (2).

Variables Step 2 (1) Step 2 (2)

x0

d0 0 0
LB0 0 0
lb0(0, x1) 0 0
lb0(1, x1) 0 0
UB0 ∞ 0
ub0(0, x1) ∞ 0
ub0(1, x1) ∞ ∞
TH0 0 0

x1

d1 0 0
CX1 {(x0, 0)} {(x0, 0)}
cx1(0, x2) {(x0, 0)} {(x0, 0)}
LB1 0 0
lb1(0, x2) 0 0
UB1 0 0
ub1(0, x2) 0 0
TH1 0 0

x2

d2 0 0
CX2 {(x1, 0)} {(x1, 0)}
LB2 0 0
UB2 0 0

Table 17: States of agents in Steps 2 (1)–2 (2).

B.3 Counterexample to Optimality Caused by
TERMINATE Messages

Figures 47–62 and Tables 18–23 show the trace of the coun-
terexample to optimality caused by TERMINATE messages,
described in 3.3. Additionally, the trace where x2 performs
reinitialization when it receives a TERMINATE message, de-
scribed in “Cause of Counterexample”, is shown as Step 6’ in
Figures 63–65 and Table 24.

VALUE

VALUE

VALUE

VALUE

VALUE

Figure 47: Step 0 (1). Agents calculate the cost in the case where x0

takes the value 0.

VALUE
VALUE COST

Figure 48: Step 0 (2). Agents calculate the cost in the case where x0

takes the value 0.

Variables Step 0 (1) Step 0 (2)

x0

d0 0 0
LB0 0 0
lb0(0, x1) 0 0
lb0(0, x4) 0 0
lb0(1, x1) 0 0
lb0(1, x4) 0 0
UB0 ∞ ∞
ub0(0, x1) ∞ ∞
ub0(0, x4) ∞ ∞
ub0(1, x1) ∞ ∞
ub0(1, x4) ∞ ∞
TH0 0 0
th0(0, x1) 0 0
th0(0, x4) 0 0
th0(1, x1) 0 0
th0(1, x4) 0 0

x1

d1 0 0
CX1 {} {}
cx1(0, x2) {} {}
LB1 0 0
lb1(0, x2) 0 0
UB1 ∞ ∞
ub1(0, x2) ∞ ∞
TH1 0 0

x2

d2 0 0
CX2 {} {}
cx2(0, x3) {} {}
cx2(1, x3) {} {}
LB2 0 0
lb2(0, x3) 0 0
lb2(1, x3) 0 0
UB2 ∞ ∞
ub2(0, x3) ∞ ∞
ub2(1, x3) ∞ ∞
TH2 0 0

x3

d3 0 0
CX3 {} {(x0, 0),

(x2, 0)}
LB3 0 1
UB3 ∞ 1

x4

d4 0 0
CX4 {} {}
LB4 0 0
UB4 ∞ ∞

Table 18: States of agents in Steps 0 (1)–0 (2).

VALUE

VALUE

COST

Figure 49: Step 0 (3). Agents calculate the cost in the case where x0

takes the value 0.

VALUE
COST

Figure 50: Step 0 (4). Agents calculate the cost in the case where x0

takes the value 0.

VALUE
COST

COST

Figure 51: Step 0 (5). Agents calculate the cost in the case where x0

takes the value 0.

Variables Step 0 (3) Step 0 (4) Step 0 (5)

x0

d0 0 0 0
LB0 0 0 0
lb0(0, x1) 0 0 0
lb0(0, x4) 0 0 0
lb0(1, x1) 0 0 0
lb0(1, x4) 0 0 0
UB0 ∞ ∞ ∞
ub0(0, x1) ∞ ∞ ∞
ub0(0, x4) ∞ ∞ ∞
ub0(1, x1) ∞ ∞ ∞
ub0(1, x4) ∞ ∞ ∞
TH0 0 0 0
th0(0, x1) 0 0 0
th0(0, x4) 0 0 0
th0(1, x1) 0 0 0
th0(1, x4) 0 0 0

x1

d1 0 0 0
CX1 {} {} {}
cx1(0, x2) {} {} {}
LB1 0 0 0
lb1(0, x2) 0 0 0
UB1 ∞ ∞ ∞
ub1(0, x2) ∞ ∞ ∞
TH1 0 0 0

x2

d2 1 1 0
CX2 {(x0,0),

(x1,0)}
{(x0, 0),
(x1, 0)}

{(x0, 0),
(x1, 0)}

cx2(0, x3) {(x0,0)} {(x0, 0)} {(x0, 0)}
cx2(1, x3) {} {} {(x0,0)}
LB2 0 0 1
lb2(0, x3) 1 1 1
lb2(1, x3) 0 0 11
UB2 1 1 1
ub2(0, x3) 1 1 1
ub2(1, x3) ∞ ∞ 11
TH2 0 0 1

x3

d3 0 0 0
CX3 {(x0, 0),

(x2, 0)}
{(x0,0),
(x2,1)}

{(x0, 0),
(x2, 1)}

LB3 1 11 11
UB3 1 11 11

x4

d4 0 0 0
CX4 {} {} {}
LB4 0 0 0
UB4 ∞ ∞ ∞

Table 19: States of agents in Steps 0 (3)–0 (5).

VALUEVALUE
COST

COST

COST

Figure 52: Step 0 (6). Agents calculate the cost in the case where x0

takes the value 0.

VALUE

VALUE

COST

VALUE

COST

Figure 53: Step 1 (1). x0 sends VALUE messages with d0 = 1 to
x1, x3, and x4.

VALUE

VALUE

COST

COST

VALUE

Figure 54: Step 1 (2). x3 and x4 receive the VALUE messages.
At this moment, x3 updates the context and the bounds as CX3 =
{(x0, 1), (x2, 0)} and LB3 = UB3 = 200, and x4 also updates
them as CX4 = {(x0, 1)} and LB4 = UB4 = 1000. Then they
send COST messages to their parents: from x3 to x2 and from x4 to
x0.

Variables Step 0 (6) Step 1 (1) Step 1 (2)

x0

d0 0 1 1
LB0 0 0 0
lb0(0, x1) 0 1 1
lb0(0, x4) 0 0 0
lb0(1, x1) 0 0 0
lb0(1, x4) 0 0 0
UB0 ∞ 1 1
ub0(0, x1) ∞ 1 1
ub0(0, x4) ∞ 0 0
ub0(1, x1) ∞ ∞ ∞
ub0(1, x4) ∞ ∞ ∞
TH0 0 0 0
th0(0, x1) 0 1 1
th0(0, x4) 0 0 0
th0(1, x1) 0 0 0
th0(1, x4) 0 0 0

x1

d1 0 0 0
CX1 {(x0,0)} {(x0, 0)} {(x0, 0)}
cx1(0, x2) {(x0,0)} {(x0, 0)} {(x0, 0)}
LB1 1 1 1
lb1(0, x2) 1 1 1
UB1 1 1 1
ub1(0, x2) 1 1 1
TH1 1 1 1

x2

d2 0 0 0
CX2 {(x0, 0),

(x1, 0)}
{(x0, 0),
(x1, 0)}

{(x0, 0),
(x1, 0)}

cx2(0, x3) {(x0, 0)} {(x0, 0)} {(x0, 0)}
cx2(1, x3) {(x0, 0)} {(x0, 0)} {(x0, 0)}
LB2 1 1 1
lb2(0, x3) 1 1 1
lb2(1, x3) 11 11 11
UB2 1 1 1
ub2(0, x3) 1 1 1
ub2(1, x3) 11 11 11
TH2 1 1 1

x3

d3 0 0 1
CX3 {(x0, 0),

(x2, 1)}
{(x0, 0),
(x2, 1)}

{(x0,1),
(x2,0)}

LB3 11 11 200
UB3 11 11 200

x4

d4 0 0 0
CX4 {(x0,0)} {(x0, 0)} {(x0,1)}
LB4 0 0 1000
UB4 0 0 1000

Table 20: States of agents in Steps 0 (6)–1 (2).

2. THRESHOLD

2. THRESHOLD
1. VALUE

1. VALUE

VALUE

COST
3. TERMINATE

3. TERMINATE

Figure 55: Step 1 (3). After x0 receives the COST message from
x4, x0 changes its value d0 back to 0 since the bounds are obtained
as LB0(1) = 1000 and LB0 = TH0 = UB0 = UB0(0) = 1
due to ThresholdInvariant. Therefore, x0 satisfies the termination
condition and then terminates. When x0 executes termination, x0

sends VALUE messages with d0 = 0 to its lower neighbors (i.e.,
x1, x3, and x4) and THRESHOLD and TERMINATE messages to
its children (i.e., x1 and x4) in this order.

1. VALUE

VALUE

2. VALUE

COST
4. TERMINATE
3. THRESHOLD

Figure 56: Step 2. x1 receives the VALUE messages from x0,
including the message that x0 sent when d0 = 1, in the order
of sending. Then x1 changes CX1 from {(x0, 0)} into {(x0, 1)}
and returns it to {(x0, 0)}. Since {(x0, 1)} is incompatible with
cx1(0, x2) = {(x0, 0)}, x1 reinitializes the bounds as LB1 = 0
and UB1 = ∞. By contrast, TH1 is not changed from 1. Further-
more, x1 receives the THRESHOLD and TERMINATE messages
from x0, and then x1 records receiving the TERMINATE message
but does not terminate because TH1 = 1 < UB1 = ∞. Addition-
ally, x1 sends a VALUE message to x2.

VALUE
COST

Figure 57: Step 3. x2 receives only the message from x1, not from
x3, which means that the messages from x3 are delayed. Then x2

sends a COST message to x1 with CX2 = {(x0, 0), (x1, 0)} and
LB2 = UB2 = 1, which are the same states as in Step 0.

Variables Step 1 (3) Step 2 Step 3

x0

d0 0 0 0
LB0 1 1 1
lb0(0, x1) 1 1 1
lb0(0, x4) 0 0 0
lb0(1, x1) 0 0 0
lb0(1, x4) 1000 1000 1000
UB0 1 1 1
ub0(0, x1) 1 1 1
ub0(0, x4) 0 0 0
ub0(1, x1) ∞ ∞ ∞
ub0(1, x4) 1000 1000 1000
TH0 1 1 1
th0(0, x1) 1 1 1
th0(0, x4) 0 0 0
th0(1, x1) 0 0 0
th0(1, x4) 1000 1000 1000

x1

d1 0 0 0
CX1 {(x0, 0)} {(x0, 0)} {(x0, 0)}
cx1(0, x2) {(x0, 0)} {} {}
LB1 1 0 0
lb1(0, x2) 1 0 0
UB1 1 ∞ ∞
ub1(0, x2) 1 ∞ ∞
TH1 1 1 1

x2

d2 0 0 0
CX2 {(x0, 0),

(x1, 0)}
{(x0, 0),
(x1, 0)}

{(x0, 0),
(x1, 0)}

cx2(0, x3) {(x0, 0)} {(x0, 0)} {(x0, 0)}
cx2(1, x3) {(x0, 0)} {(x0, 0)} {(x0, 0)}
LB2 1 1 1
lb2(0, x3) 1 1 1
lb2(1, x3) 11 11 11
UB2 1 1 1
ub2(0, x3) 1 1 1
ub2(1, x3) 11 11 11
TH2 1 1 1

x3

d3 1 1 1
CX3 {(x0, 1),

(x2, 0)}
{(x0, 1),
(x2, 0)}

{(x0, 1),
(x2, 0)}

LB3 200 200 200
UB3 200 200 200

x4

d4 0 0 0
CX4 {(x0, 1)} {(x0, 1)} {(x0, 1)}
LB4 1000 1000 1000
UB4 1000 1000 1000

Table 21: States of agents in Steps 1 (3)–3.

VALUECOST

Figure 58: Step 4 (1). x2 receives the COST message from x3 with
CX3 = {(x0, 1), (x2, 0)} and LB3 = UB3 = 200. Since x2

is not a neighbor of x0, x2 updates CX2 from {(x0, 0), (x1, 0)}
to {(x0, 1), (x1, 0)}. Then the bounds of x2 are reinitialized and
updated by the bounds in the message: LB2(0) = UB2(0) =
200, LB2(1) = 0, and UB2(1) = ∞. x2 also changes its value
d2 to 1 because LB2(0) > TH2 = 1, and sends a VALUE message
to x3.

VALUE
COST

Figure 59: Step 4 (2). After x3 receives only the VALUE mes-
sage from x2 but not the messages from x1, x3 updates the cur-
rent context and the bounds as CX3 = {(x0, 1), (x2, 1)} and
LB3 = UB3 = 100. Next, x3 sends a COST message to x2 again.

VALUE
COST

COST

Figure 60: Step 4 (3). x2 receives it. Then x2 computes the bounds
as LB2(1) = UB2(1) = 100 and updates the threshold as TH2 =
100 because of ThresholdInvariant.

Trace Step 4 (1) Step 4 (2) Step 4 (3)

x0

d0 0 0 0
LB0 1 1 1
lb0(0, x1) 1 1 1
lb0(0, x4) 0 0 0
lb0(1, x1) 0 0 0
lb0(1, x4) 1000 1000 1000
UB0 1 1 1
ub0(0, x1) 1 1 1
ub0(0, x4) 0 0 0
ub0(1, x1) ∞ ∞ ∞
ub0(1, x4) 1000 1000 1000
TH0 1 1 1
th0(0, x1) 1 1 1
th0(0, x4) 0 0 0
th0(1, x1) 0 0 0
th0(1, x4) 1000 1000 1000

x1

d1 0 0 0
CX1 {(x0, 0)} {(x0, 0)} {(x0, 0)}
cx1(0, x2) {} {} {}
LB1 0 0 0
lb1(0, x2) 0 0 0
UB1 ∞ ∞ ∞
ub1(0, x2) ∞ ∞ ∞
TH1 1 1 1

x2

d2 1 1 1
CX2 {(x0,1),

(x1,0)}
{(x0, 1),
(x1, 0)}

{(x0, 1),
(x1, 0)}

cx2(0, x3) {(x0,1)} {(x0, 1)} {(x0, 1)}
cx2(1, x3) {} {} {(x0,1)}
LB2 0 0 100
lb2(0, x3) 200 200 200
lb2(1, x3) 0 0 100
UB2 200 200 100
ub2(0, x3) 200 200 200
ub2(1, x3) ∞ ∞ 100
TH2 1 1 100

x3

d3 1 1 1
CX3 {(x0, 1),

(x2, 0)}
{(x0,1),
(x2,1)}

{(x0, 1),
(x2, 1)}

LB3 200 100 100
UB3 200 100 100

x4

d4 0 0 0
CX4 {(x0, 1)} {(x0, 1)} {(x0, 1)}
LB4 1000 1000 1000
UB4 1000 1000 1000

Table 22: States of agents in Steps 4 (1)–4 (3).

in Step 3COST

2. TERMINATE
1. THRESHOLD

Figure 61: Step 5. x1 receives the COST message with CX2 =
{(x0, 0), (x1, 0)} and LB2 = UB2 = 1, sent from x2 in Step 3.
Since this context is compatible with CX1 = {(x0, 0)}, x1 updates
the bounds as LB1 = UB1 = 1. At this moment, the termination
condition is satisfied because TH1 = UB1 = 1. Thus, x1 sends
two messages to x2: a THRESHOLD message with th1(0, x2) = 1
and CX1 = {(x0, 0)} and a TERMINATE message with CX1 ∪
{(x1, 0)} = {(x0, 0), (x1, 0)}. Then x1 terminates.

2. TERMINATE
1. THRESHOLD

Figure 62: Step 6. When x2 receives the THRESHOLD message
from x1, x2 does not update TH2 since context {(x0, 0)} in the
message is incompatible with CX2 = {(x0, 1), (x1, 0)}, and there-
fore retains its threshold as TH2 = 100. Next, x2 receives the
TERMINATE message from x1. Although CX2 is changed to
{(x0, 0), (x1, 0)}, the bounds of x2 are not changed since reini-
tialization is not performed when an agent receives a TERMINATE
message. Therefore, x2 terminates with the suboptimal value d2 =
1 because x2 has already satisfied the termination condition with
UB2 = UB2(1) = TH2 = 100 and received the TERMINATE
message.

Variables Step 5 Step 6

x0

d0 0 0
LB0 1 1
lb0(0, x1) 1 1
lb0(0, x4) 0 0
lb0(1, x1) 0 0
lb0(1, x4) 1000 1000
UB0 1 1
ub0(0, x1) 1 1
ub0(0, x4) 0 0
ub0(1, x1) ∞ ∞
ub0(1, x4) 1000 1000
TH0 1 1
th0(0, x1) 1 1
th0(0, x4) 0 0
th0(1, x1) 0 0
th0(1, x4) 1000 1000

x1

d1 0 0
CX1 {(x0, 0)} {(x0, 0)}
cx1(0, x2) {(x0,0)} {(x0, 0)}
LB1 1 1
lb1(0, x2) 1 1
UB1 1 1
ub1(0, x2) 1 1
TH1 1 1

x2

d2 1 1
CX2 {(x0, 1), (x1, 0)} {(x0,0),

(x1,0)}
cx2(0, x3) {(x0, 1)} {(x0, 1)}
cx2(1, x3) {(x0, 1)} {(x0, 1)}
LB2 100 100
lb2(0, x3) 200 200
lb2(1, x3) 100 100
UB2 100 100
ub2(0, x3) 200 200
ub2(1, x3) 100 100
TH2 100 100

x3

d3 1 1
CX3 {(x0, 1), (x2, 1)} {(x0, 1), (x2, 1)}
LB3 100 100
UB3 100 100

x4

d4 0 0
CX4 {(x0, 1)} {(x0, 1)}
LB4 1000 1000
UB4 1000 1000

Table 23: States of agents in Steps 5–6.

2. TERMINATE
1. THRESHOLD

VALUE

Figure 63: Step 6’ (1). The bounds of x2 are reinitialized when
x2 receives the TERMINATE message from x1 in Step 6. In this
case, the bounds of x2 are obtained as LB2(0) = LB2(1) = 0 and
UB2(0) = UB2(1) = ∞; and the threshold of x2 is obtained as
TH2 = 100.

VALUEVALUE
COST

Figure 64: Step 6’ (2). After x3 receives the VALUE message with
the value d0 = 0 from x0, x3 updates the current context as CX3 =
{(x0, 0), (x2, 1)} and the bounds as LB3 = UB3 = 11. Then x3

sends a COST message to x2.

COST

Figure 65: Step 6’ (3). x2 receives the COST message from x3. At
this point, x2 computes the bounds as LB2(1) = UB2(1) = 11 be-
cause context {(x0, 0), (x2, 1)} in the COST message is compatible
with CX2 = {(x0, 0), (x1, 0)}. Then x2 updates the threshold as
TH2 = 11 due to ThresholdInvariant. Since UB2 = UB2(1) =
TH2, x2 does not change its variable value d2 from 1. Therefore,
x2 satisfies the termination condition and terminates with the sub-
optimal value d2 = 1.

Variables Step 6’ (1) Step 6’ (2) Step 6’ (3)

x0

d0 0 0 0
LB0 1 1 1
lb0(0, x1) 1 1 1
lb0(0, x4) 0 0 0
lb0(1, x1) 0 0 0
lb0(1, x4) 1000 1000 1000
UB0 1 1 1
ub0(0, x1) 1 1 1
ub0(0, x4) 0 0 0
ub0(1, x1) ∞ ∞ ∞
ub0(1, x4) 1000 1000 1000
TH0 1 1 1
th0(0, x1) 1 1 1
th0(0, x4) 0 0 0
th0(1, x1) 0 0 0
th0(1, x4) 1000 1000 1000

x1

d1 0 0 0
CX1 {(x0, 0)} {(x0, 0)} {(x0, 0)}
cx1(0, x2) {(x0, 0)} {(x0, 0)} {(x0, 0)}
LB1 1 1 1
lb1(0, x2) 1 1 1
UB1 1 1 1
ub1(0, x2) 1 1 1
TH1 1 1 1

x2

d2 1 1 1
CX2 {(x0,0),

(x1,0)}
{(x0, 0),
(x1, 0)}

{(x0, 0),
(x1, 0)}

cx2(0, x3) {} {} {}
cx2(1, x3) {} {} {(x0,0)}
LB2 0 0 0
lb2(0, x3) 0 0 0
lb2(1, x3) 0 0 11
UB2 ∞ ∞ 11
ub2(0, x3) ∞ ∞ ∞
ub2(1, x3) ∞ ∞ 11
TH2 100 100 11

x3

d3 1 0 0
CX3 {(x0, 1),

(x2, 1)}
{(x0,0),
(x2,1)}

{(x0, 0),
(x2, 1)}

LB3 100 11 11
UB3 100 11 11

x4

d4 0 0 0
CX4 {(x0, 1)} {(x0, 1)} {(x0, 1)}
LB4 1000 1000 1000
UB4 1000 1000 1000

Table 24: States of agents in Steps 6’ (1)–6’ (3).

C Pseudocode of the amended version of
ADOPT

Algorithms 1 and 2 show the pesudocodes of the amended
version of ADOPT, described in Section 4. As described in
Section 4, the amendment consists of three parts. The mod-
ification of the update rules for the lower and upper bounds
for a child is in lines 32–33; the modification of initialization
is in line 3; and the modifications of TERMINATE messages
and their receiving procedure are in lines 43, 46–49, and 60.

Here, the predicate Compatible(CX,CX ′) means
whether two contexts CX and CX ′ are compatible or not.
This is represented as follows:

Compatible(CX,CX ′)

≡ ¬∃(xi,di)∈CX,(xj ,dj)∈CX′(xi = xj ∧ di ̸= dj).

Algorithm 1 Amended version of ADOPT
1: procedure Start()
2: THi := 0;
3: CXi := {(xp, V alInit(xp)) | xp ∈ SCP (xi)};
4: for all d ∈ Di, xc ∈ C(xi) do
5: InitChild(d, xc);
6: di := argmind∈Di

LBi(d);
7: MaintainThresholdInvariant();
8: Backtrack();

9: procedure InitChild(d, xc)
10: lbi(d, xc) := 0;
11: ubi(d, xc) := ∞;
12: thi(d, xc) := 0;
13: cxi(d, xc) := ∅;

14: procedure Received(VALUE, xp, d)
15: if TERMINATE not received from parent then
16: add (xp, d) to CXi (and remove the old assigment of xp);
17: for all d ∈ Di, xc ∈ C(xi) do
18: if ¬Compatible(CXi, cxi(d, xc)) then
19: InitChild(d, xc);
20: MaintainThresholdInvariant();
21: Backtrack();

22: procedure Received(COST, xc, CX, lb, ub)
23: d := d′

i s.t. (xi, d
′
i) ∈ CX;

24: remove (xi, d) from CX;
25: if TERMINATE not received from parent then
26: for all (xj , dj) ∈ CX and xj is not xi’s neighbor do
27: add (xj , dj) to CXi (and remove the old assigment of xj);
28: for all d′ ∈ Di, x

′
c ∈ C(xi) do

29: if ¬Compatible(CXi, cxi(d
′, x′

c)) then
30: InitChild(d′, x′

c);
31: if Compatible(CX,CXi) then
32: lbi(d, xc) := max {lbi(d, xc), lb};
33: ubi(d, xc) := min {ubi(d, xc), ub};
34: cxi(d, xc) := CX;
35: MaintainChildThresholdInvariant();
36: MaintainThresholdInvariant();
37: Backtrack();

38: procedure Received(THRESHOLD, th, CX)
39: if Compatible(CX,CXi) then
40: THi := th;
41: MaintainThresholdInvariant();
42: Backtrack();

43: procedure Received(TERMINATE, th, CX)
44: record TERMINATE received;
45: CXi := CX
46: THi := th;
47: for all d ∈ Di, xc ∈ C(xi) do
48: if ¬Compatible(CXi, cxi(d, xc)) then
49: InitChild(d, xc);
50: Backtrack();

Algorithm 2 Amended version of ADOPT (continued)
51: procedure Backtrack()
52: if THi = UBi then
53: di := argmind∈Di

UBi(d) (choose the previous di if possible);
54: else if LBi(di) > THi then
55: di := argmind∈Di

LBi(d);

56: Send(VALUE, xi, di) to each xc ∈ CD(xi);
57: MaintainAllocationInvariant();
58: if THi = UBi then
59: if TERMINATE received or xi is root then
60: Send(TERMINATE, thi(di, xc), CXi∪{(xi, di)}) to each xc ∈

C(xi);
61: terminate execution;
62: Send(COST, xi, CXi, LBi, UBi) to pa(xi);

63: procedure MaintainThresholdInvariant()
64: if THi < LBi then
65: THi := LBi;
66: if THi > UBi then
67: THi := UBi;

68: procedure MaintainAllocationInvariant()
69: while THi > δi(di) +

∑
xc∈C(xi)

thi(di, xc) do
70: choose xc ∈ C(xi) where ubi(di, xc) > thi(di, xc);
71: thi(di, xc) := thi(di, xc) + 1;
72: while THi < δi(di) +

∑
xc∈C(xi)

thi(di, xc) do
73: choose xc ∈ C(xi) where lbi(di, xc) < thi(di, xc);
74: thi(di, xc) := thi(di, xc) − 1;
75: Send(THRESHOLD, thi(di, xc), CXi) to each xc ∈ C(xi);

76: procedure MaintainChildThresholdInvariant()
77: for all d ∈ Di, xc ∈ C(xi) do
78: while lbi(d, xc) > thi(d, xc) do
79: thi(d, xc) := thi(d, xc) + 1;
80: for all d ∈ Di, xc ∈ C(xi) do
81: while thi(d, xc) > ubi(d, xc) do
82: thi(d, xc) := thi(d, xc) − 1;

D Proof of Termination and Optimality for
the Amended Version of ADOPT

We prove the termination and optimality of the amended ver-
sion of ADOPT by two theorems, i.e., Theorem 1 for ter-
mination and Theorem 2 for optimality. The arguments of
the proofs are based on the study of BnB-ADOPT [Yeoh et
al., 2010] with some modifications. First, we modify some
statements and arguments because of the differences between
the amended version of ADOPT and BnB-ADOPT, e.g., ID
is not introduced in our version. Second, we add lemmata
with regard to thresholds, which are crucial for the termina-
tion condition. Finally, we modify the statement of Theo-
rem 2 to guarantee that all agents obtain the optimal values
and costs at termination although the study of BnB-ADOPT
only guarantees that the root agent obtains the optimal cost.

In the proofs, the notations concerning agents involved by
agent xi ∈ X in a pseudo-tree are as follows: CD(xi) ⊆ X
is a set of the children and pseudo-children of xi; C(xi) ⊆
CD(xi) is a set of the children of xi; pa(xi) ∈ X is the
parent of xi; P (xi) ⊆ X is a set of the ancestors of xi;
SCP (xi) ⊆ P (xi) is a set of the ancestors of xi that are
the parents or pseudo-parents of agents (including xi) in the
subtree rooted at xi; CP (xi) ⊆ SCP (xi) is a set of the an-
cestors of xi that are the parent or pseudo-parents of xi.

Furthermore, as shown in Section 3, we assume that mes-
sage transfer is based on a cycle. ϵ is the largest duration of a
cycle, i.e., the largest duration between receiving a message
and sending new messages. Additionally, ∆ is the largest du-
ration between sending a message and receiving it.

Lemma 1. If two contexts CX and CX ′ of any agent xi ∈ X
contain the values of all agents xp ∈ SCP (xi), and if these
values coincide for each xp ∈ SCP (xi), then γi(CX) =
γi(CX ′).

Proof. By induction on the height (denoted by k) of the sub-
tree rooted at xi.

Base Case (for k = 0). Consider the case where xi is a leaf
agent. By definition,

γi(CX) = min
d∈Di

γi(d,CX)

= min
d∈Di

δi(d,CX).

Since δi(d,CX) is the local cost between xi and its
higher neighbors, δi(d,CX) is determined by d and the
values of xp ∈ CP (xi) ⊆ SCP (xi) contained in CX .
By assumption, given CX contains all the values of
xp ∈ SCP (xi),

γi(CX) = min
d∈Di

 ∑
xp∈CP (xi)

fi,p(d, dp)


such that (xp, dp) ∈ CX . Similarly,

γi(CX ′) = min
d∈Di

 ∑
xp∈CP (xi)

fi,p(d, d
′
p)



such that (xp, d
′
p) ∈ CX ′. By assumption, the values of

any xp ∈ SCP (xi) in CX and CX ′ coincide. Thus, for
any value d ∈ Di,∑

xp∈CP (xi)

fi,p(d, dp) =
∑

xp∈CP (xi)

fi,p(d, d
′
p).

Therefore, γi(CX) = γi(CX ′).
Indution Step (for k > 0). By definition and a similar argu-

ment as in the base case,

γi(CX) = min
d∈Di

γi(d,CX)

= min
d∈Di

(
δi(d,CX)

+
∑

xc∈C(xi)

γc (CX ∪ {(xi, d)})

)

= min
d∈Di

 ∑
xp∈CP (xi)

fi,p(d, dp)

+
∑

xc∈C(xi)

γc (CX ∪ {(xi, d)})


such that (xp, dp) ∈ CX . Similarly,

γi(CX ′) = min
d∈Di

 ∑
xp∈CP (xi)

fi,p(d, d
′
p)

+
∑

xc∈C(xi)

γc (CX ′ ∪ {(xi, d)})


such that (xp, d

′
p) ∈ CX ′. By assumption, the val-

ues contained in CX and CX ′ coincide for any xp ∈
SCP (xi). Thus, for any value d ∈ Di,∑

xp∈CP (xi)

fi,p(d, dp) =
∑

xp∈CP (xi)

fi,p(d, d
′
p).

Also, for any value d ∈ Di and any child xc ∈ C(xi),
both CX ∪ {(xi, d)} and CX ′ ∪ {(xi, d)} contain the
value for any x′

p ∈ SCP (xc) ⊆ SCP (xi) ∪ {xi}, and
CX ∪ {(xi, d)} and CX ′ ∪ {(xi, d)} coincide for the
value of any x′

p ∈ SCP (xc). Thus, by the induction
hypothesis,

γc (CX ∪ {(xi, d)}) = γc (CX ′ ∪ {(xi, d)}) .

Therefore, γi(CX) = γi(CX ′).

Lemma 2. If context CXi does not change for any agent
xi ∈ X from a time T to a time t ≥ T , then for any time
t′ such that T ≤ t′ ≤ t, lower bounds lbi(d, xc), LBi(d),
and LBi and upper bounds ubi(d, xc), UBi(d), and UBi

are monotonically non-decreasing and monotonically non-
increasing, respectively, for any value d ∈ Di and any child
xc ∈ C(xi).

Proof. Since CXi does not change at any time t′ such that
T ≤ t′ ≤ t, the value δi(d,CXi) also does not change for
any d ∈ Di. In addition, for any d ∈ Di and any xc ∈ C(xi),
the lower and upper bounds are updated by the equations (1)–
(6) after the initialization. Therefore, the lower and upper
bounds are monotonically non-decreasing and monotonically
non-increasing, respectively, for any d ∈ Di and any xc ∈
C(xi).

Definition 1. The current context CXi of agent xi is correct
iff CXi contains the assignments of all agents in SCP (xi),
and the values of all agents in CXi are equal to the values of
the agents, i.e.,

∀xp∈SCP (xi) ((xp, d) ∈ CXi)

∧∀(x′
j ,d

′
j)∈CXi

∃xj∈X

(
xj = x′

j ∧ dj = d′j
)
.

Lemma 3. If the value of any agent xp ∈ SCP (xi) for any
agent xi ∈ X does not change from a time T to a time t such
that T + |X| · (∆ + ϵ) + ϵ ≤ t, the value of xp contained
in the context of xi is equal to the value taken by xp between
some time t′ ≤ t and t.

Proof.

Case 1. Consider the case where xp is a parent or a pseudo-
parent of xi. Since the duration of one cycle is less than
or equal to ϵ, xp sends a VALUE message containing its
own value to xi at a time t′′ such that T ≤ t′′ ≤ T + ϵ.
Since the maximum delay for a message to arrive is ∆,
xi receives the VALUE message before time t′′ + ∆.
After that, the value of xp contained in the context of xi

is updated. Thus, there exists a time t′ with t′′ ≤ t′ ≤
t′′+∆ ≤ T +∆+ ϵ such that the value of xp contained
in the context of xi are equal to the value taken by xp.

Case 2. Consider the case where xp is neither the parent nor
the pseudo-parent of xi. Since xp ∈ SCP (xi), among
the descendant agents of xi, there exists an agent (say,
xc) which is a child or a pseudo-child of xp. As in Case
1, xp sends a VALUE message containing its own value
to xc at a time t′′ such that T ≤ t′′ ≤ T + ϵ, and then xc

receives this message before time t′′ + ∆. After that,
the value of xp contained in the context of xc is up-
dated, and then xc sends a COST message containing
the updated context to pa(xc) before t′′+∆+ ϵ. Subse-
quently, pa(xc) receives the message before t′′+2∆+ϵ.
After that, the value of xp contained in the context of
pa(xc) is updated, and then pa(xc) sends a COST mes-
sage containing the updated context to pa(pa(xc)) be-
fore t′′ + 2 · (∆ + ϵ). A similar process continues until
the value of xp contained in the context of xi is updated.
Specifically, for the number (say, k ≤ |X|) of chains of
message passing, the context of xi is updated by time
t′′ + k · ∆ + (k − 1) · ϵ. Therefore, from time t′ to
time t such that t′′ ≤ t′ ≤ t′′ + k · ∆ + (k − 1) · ϵ <
T + |X| · (∆ + ϵ) + ϵ ≤ t, the value of xp contained in
the context of xi is equal to the value taken by xp.

Corollary 1. If the values of all agents xp ∈ SCP (xi) for
any agent xi ∈ X do not change between some time T and

time t such that T + |X| · (∆ + ϵ) + ϵ ≤ t, then the context
of xi is correct between some time t′ ≤ t and t.

Lemma 4. For any agent xi ∈ X , any value d ∈ Di, and
any child xc ∈ C(xi), if LBc ≤ γc(CXc) ≤ UBc holds at
any time, then lbi(d, xc) ≤ γc(CXi∪{(xi, d)}) ≤ ubi(d, xc)
also holds at any time.

Proof. By induction on the number (say, k ≥ 0) of times that
agent xi changes its context or updates its bounds lbi(d, xc)
and ubi(d, xc) for any d ∈ Di and any xc ∈ C(xi) after xi

initializes the bounds.
Base Case (for k = 0). In this case, xi initializes lbi(d, xc)

and ubi(d, xc), where

lbi(d, xc) = 0

≤ γc(CXi ∪ {(xi, d)})
≤ ∞
= ubi(d, xc).

Induction Step (for k > 0). For the case where xi changes
the context or updates lbi(d, xc) and ubi(d, xc) for any
d ∈ Di and any xc ∈ C(xi) without initializing these
bounds, there are the following two cases: one is when
the context is changed, i.e., when xi receives a VALUE
or TERMINATE message, or receives a COST message
and executes lines 25–27 of Algorithm 1; the other is
when the bounds are updated, i.e., when xi receives
a COST message and executes lines 31–33 of Algo-
rithm 1.
Case 1. Let us assume xi receives either VALUE,

COST, or TERMINATE message from xc, and then
changes the context from CXi to ĈXi without
reinitializing the bounds. This case is divided into
the following subcases (i) and (ii) depending on
whether cxi(d, xc) = ∅ or not.

(i) For cxi(d, xc) = ∅. If SCP (xc) = {xi},
then cxi(d, xc) = ∅ always holds. In this
case, however, the context of xi does not
change. Since the context of xi is changed
and cxi(d, xc) = ∅, lbi(d, xc) and ubi(d, xc)
remain initialized. Therefore, as in the base
case,

lbi(d, xc) = 0

≤ γc(CXi ∪ {(xi, d)})
≤ ∞
= ubi(d, xc).

(ii) For cxi(d, xc) ̸= ∅. In this case, cxi(d, xc)

is compatible with CXi and ĈXi. More-
over, by the initialization of the context of
xi, each CXi and ĈXi contains the value of
all xp ∈ SCP (xi). Similarly, since CXc

contains the value of all x′
p ∈ SCP (xc) ⊆

SCP (xi) ∪ {xi}, cxi(d, xc) contains the
value of all x′

p ∈ SCP (xc)\{xi}. Therefore,
each CXi ∪ {(xi, d)} and ĈXi ∪ {(xi, d)}

contains the value of all x′
p ∈ SCP (xc),

where the values of any x′
p ∈ SCP (xc) con-

tained in CXi∪{(xi, d)} and ĈXi∪{(xi, d)}
coincide. Thus, by Lemma 1 and the induc-
tion hypothesis,

lbi(d, xc) ≤ γc(CXi ∪ {(xi, d)})
= γc(ĈXi ∪ {(xi, d)})

ubi(d, xc) ≥ γc(CXi ∪ {(xi, d)})
= γc(ĈXi ∪ {(xi, d)}).

Case 2. Let us assume xi receives a COST message
from xc, and then updates lbi(d, xc) and ubi(d, xc)

to l̂bi(d, xc) and ûbi(d, xc), respectively, without
initialization. In this case, CXi ∪ {(xi, d)} is com-
patible with CXc in the COST message. More-
over, by the initialization of the contexts of xi and
xc, CXi ∪ {(xi, d)} and CXc contain the value
of any x′

p ∈ SCP (xc) ⊆ SCP (xi) ∪ {xi},
where the values of all x′

p ∈ SCP (xc) contained
in CXi ∪ {(xi, d)} and CXc coincide. Thus, by
Lemma 1 and the induction hypothesis,

l̂bi(d, xc) =max {lbi(d, xc), LBc}
≤max {γc(CXi ∪ {(xi, d)}),

γc(CXc)}
=max {γc(CXi ∪ {(xi, d)}),

γc(CXi ∪ {(xi, d)})}
=γc(CXi ∪ {(xi, d)})

ûbi(d, xc) =min {ubi(d, xc), UBc}
≥min {γc(CXi ∪ {(xi, d)}),

γc(CXc)}
=min {γc(CXi ∪ {(xi, d)}),

γc(CXi ∪ {(xi, d)})}
=γc(CXi ∪ {(xi, d)}).

Therefore, for any value d ∈ Di and any child
xc ∈ C(xi), lbi(d, xc) ≤ γc(CXi ∪ {(xi, d)}) ≤
ubi(d, xc) always holds.

Lemma 5. For any value d ∈ Di of any agent xi ∈ X ,
LBi(d) ≤ γi(d,CXi) ≤ UBi(d) and LBi ≤ γi(CXi) ≤
UBi hold at any time.

Proof. By induction on the height (say, k) of the subtree
rooted at agent xi.

Base Case (for k = 0). For the case where xi is a leaf agent.
For any value d ∈ Di,

LBi(d) = δi(d,CXi)

= γi(d,CXi)

UBi(d) = δi(d,CXi)

= γi(d,CXi).

Thus, for any value d ∈ Di, LBi(d) ≤ γi(d,CXi) ≤
UBi(d) always holds. Also,

LBi = min
d∈Di

LBi(d)

= min
d∈Di

γi(d,CXi)

= γi(CXi)

UBi = min
d∈Di

UBi(d)

= min
d∈Di

γi(d,CXi)

= γi(CXi).

Thus, LBi ≤ γi(CXi) ≤ UBi always holds.
Induction Step (for k > 0). By the induction hypothesis

and Lemma 4, for any d ∈ Di,

LBi(d) = δi(d,CXi) +
∑

xc∈C(xi)

lbi(d, xc)

≤ δi(d,CXi) +
∑

xc∈C(xi)

γc(CXi ∪ {(xi, d)})

= γi(d,CXi)

UBi(d) = δi(d,CXi) +
∑

xc∈C(xi)

ubi(d, xc)

≥ δi(d,CXi) +
∑

xc∈C(xi)

γc(CXi ∪ {(xi, d)})

= γi(d,CXi).

Thus, for any d ∈ Di, LBi(d) ≤ γi(d,CXi) ≤ UBi(d)
always holds. Also,

LBi = min
d∈Di

LBi(d)

≤ min
d∈Di

γi(d,CXi)

= γi(CXi)

UBi = min
d∈Di

UBi(d)

≥ min
d∈Di

γi(d,CXi)

= γi(CXi).

Thus, LBi ≤ γi(CXi) ≤ UBi always holds.

Definition 5. For agent xi ∈ X , the potential of xi is∑
d∈Di

(UBi(d)− LBi(d)).
Lemma 6. If the context CXi of any agent xi ∈ X does
not change after a time t, then the potential of the agent is
monotonically non-increasing and decreases by more than a
positive constant every time the agent changes its value after
t.

Proof. Since CXi does not change after t, by Lemma 2, the
lower bound LBi(d) is monotonically non-decreasing, and
the upper bound UBi(d) is monotonically non-increasing for
all d ∈ Di. Therefore, the potential of xi is monotonically
non-increasing. In addition, xi changes the value di to a new
value d̂i only if LBi(d̂i) = mind∈Di

LBi(d) < LBi(di) or

UBi(d̂i) = mind∈Di UBi(d) < UBi(di). Thus, between
time t and the time t′ > t when di changes to d̂i, LBi(di)

increases or UBi(d̂i) decreases. Therefore, the potential of
xi decreases by more than a positive constant after t.

Lemma 7. All agents change their values only a finite num-
ber of times.

Proof. Assume that agent xi ∈ X infinitely changes its
value. Since SCP (xr) = ∅ holds for the root agent xr and
we can prove the lemma by the induction on the depth of xi

in the pseudo-tree based on the argument below, without loss
of generality, we can assume that all agents xp ∈ SCP (xi)
change their values only a finite number of times. By this as-
sumption, there exists a time t such that all xp ∈ SCP (xi)
do not change their values after t. Thus, by Corollary 1, there
exists a time t′ ≥ t such that the context CXi of xi is correct
and the agent does not change the values in the context after
t′. Furthermore, by Lemma 6, every time agent xi changes its
value afterwards, its potential decreases by more than a posi-
tive constant. By assumption, since xi infinitely changes the
value, the potential of xi decreases towards −∞. However,
by Lemma 5, LBi(d) ≤ UBi(d) holds for all d ∈ Di. Thus,
the potential of xi cannot become negative, which is a contra-
diction. Therefore, all agents change their values only a finite
number of times.

Lemma 8. If all agents xi ∈ X does not change di, CXi,
lbi(d, xc), LBi(d), LBi, ubi(d, xc), UBi(d), and UBi for
all values d ∈ Di and all children xc ∈ C(xi) and CXi is
correct after some time T , then there exists a time t ≥ T such
that THi and thi(di, xc) do not change and thi(di, xc) =
THc holds for any xi and any its child xc after t.

Proof. By assumption, THi and thi(di, xc) may change only
if xp = pa(xi) sends a THRESHOLD or TERMINATE mes-
sage containing thp(dp, xi) ̸= THi to xi and then xi receives
it. In the following, we use the induction on the depth of xi

in the pseudo-tree.

Base Case (for k = 0). For the case where xi is the root
agent. Since xi does not receive a THRESHOLD or
TERMINATE message, THi and thi(di, xc) do not
change for any xc ∈ C(xi) after T . Let us consider
the time (say, t′) when a COST message sent from xc

after T is received. By the process conducted at t′ and
ChildThresholdInvariant, we have

thi(di, xc) ≥ lbi(di, xc)

= max {lb′i(di, xc), LBc}
≥ LBc,

thi(di, xc) ≤ ubi(di, xc)

= min {ub′i(di, xc), UBc}
≤ UBc,

where lb′i(di, xc) and ub′i(di) are the previous bounds.
Thus, thi(di, xc) satisfies the ThresholdInvariant of xc,
i.e., LBc ≤ thi(di, xc) ≤ UBc, after t′. Addition-
ally, by the assumption, CXi and CXc are compatible.

Therefore, at a time t ≥ t′ when any xc ∈ C(xi) re-
ceives the THRESHOLD message sent from xi after t′,
xc updates THc to thi(di, xc) in the message. Thus,
thi(di, xc) = THc at t. Here, after t, THc changes only
if xc receives a THRESHOLD or TERMINATE mes-
sage with thi(di, xc) ̸= THc. Since thi(di, xc) does
not change after t, THc also does not change. There-
fore, thi(di, xc) = THc holds after t.

Induction Step (for k > 0). By the induction hypothesis,
after some time t′ ≥ T , xp = pa(xi) does not change
thp(dp, xi) and thp(dp, xi) = THi holds. By the
same argument as in the base case, there exists a time
t ≥ t′ such that THi and thi(di, xc) do not change and
thi(di, xc) = THc holds after t.

Lemma 9. There exists a time t such that THi = UBi holds
for all agents xi after t.

Proof. By Lemma 7, there exists a time t0 such that any agent
xi does not change its value di after t0. Thus, by Corollary 1,
there exists a time t1 ≥ t0 such that the context CXi of any
xi is correct and does not changed after t1. Also, by the fol-
lowing reasons (1)–(3), there exists a time t2 ≥ t1 such that
for any xi and for all its values d ∈ Di and all its children
xc ∈ C(xi), lbi(d, xc), LBi(d), LBi, ubi(d, xc), UBi(d),
and UBi do not change after t2.

(1) By Lemma 2, the lower bounds lbi(d, xc), LBi(d), and
LBi are monotonically non-decreasing, and the upper
bounds ubi(d, xc), UBi(d), and UBi are monotonially
non-increasing.

(2) By Lemma 5, LBi(d) ≤ γi(d,CXi) ≤ UBi(d)∧LBi ≤
γi(CXi) ≤ UBi.

(3) By Lemma 4, lbi(d, xc) ≤ ubi(d, xc).

Therefore, by Lemma 8, there exists a time t3 ≥ t2 such
that for any xi and any xc ∈ C(xi), THi and thi(di, xc)
do not change and thi(di, xc) = THc holds after t3. Let
us consider the time t4 ≥ t3 when the first COST messages
sent to all agents after t3 are received and processed. In the
following, we use the induction on the height (say, k) of the
subtree rooted at agent xi.

Base Case (for k = 0). For the case where xi is a leaf agent.
By definition,

LBi = min
d∈Di

LBi(d) = min
d∈Di

δi(d,CXi)

UBi = min
d∈Di

UBi(d) = min
d∈Di

δi(d,CXi).

Thus, LBi = UBi. Also, by ThresholdInvariant, LBi ≤
THi ≤ UBi. Therefore, THi = UBi always holds.

Induction Step. By the induction hypothesis, we have the

following:

UBi = min
d∈Di

UBi(d)

≤UBi(di)

=δi(di, CXi) +
∑

xc∈C(xi)

ubi(di, xc)

=δi(di, CXi) +
∑

xc∈C(xi)

(min {ub′i(di, xc),

UBc})

=δi(di, CXi) +
∑

xc∈C(xi)

(min {ub′i(di, xc),

THc})

=δi(di, CXi) +
∑

xc∈C(xi)

(min {ub′i(di, xc),

thi(di, xc)})

≤δi(di, CXi) +
∑

xc∈C(xi)

thi(di, xc)

=THi,

where ub′i(di, xc) is the previous upper bound. Also, by
ThresholdInvariant, THi ≤ UBi holds. Thus, THi =
UBi holds at t4. Since THi and UBi do not change
after t4, THi = UBi holds after t4.

Theorem 1. The amended version of ADOPT terminates af-
ter a finite amount of time.

Proof. By Lemma 9, there exists a time t such that THi =
UBi holds for all agents xi after t. If THi = UBi holds at the
root agent xr, then the agent sends TERMINATE messages
to all xc ∈ C(xr) and then terminates. These TERMINATE
messages arrive at all xc in a finite time. At that time, since
THc = UBc also holds at all xc, the agent sends TERMI-
NATE messages to all x′

c ∈ C(xc) and then terminates. By
the same process as above, all agents terminate after a finite
amount of time.

Lemma 10. LBr = THr always holds at the root agent xr.

Proof. Since xr does not receive THRESHOLD and TERMI-
NATE messages, THr changes so as to satisfy ThresholdIn-
variant only if LBr or UBr changes when the agent receives
a COST message. Furthermore, for any d ∈ Dr and any
xc ∈ C(xc), cxr(d, xc) = ∅ always holds. Since cxr(d, xc)
is compatible with any context, the bounds lbr(d, xc) and
ubr(d, xc) are initialized only at the beginning of the algo-
rithm execution. In the following, we use the induction on
the number (say, k ≥ 0) of changes of LBr and UBr after xr

initializes lbr(d, xc) and ubr(d, xc).

Base Case (for k = 0). In this case, lbr(d, xc) and
ubr(d, xc) are initialized for all d ∈ Dr and all
xc ∈ C(xr). Thus, lbr(d, xc) = 0. Also, since

CXr = ∅, δr(d,CXr) = 0. Therefore,

LBr = min
d∈Dr

LBr(d)

= min
d∈Dr

δr(d,CXr) +
∑

xc∈C(xr)

lbr(d, xc)


= 0.

Furthermore, THr = 0 holds when xr initializes
lbr(d, xc) and ubr(d, xc) at the beginning of the algo-
rithm execution. Therefore, LBr = THr.

Induction Step (for k > 0). Since CXr = ∅ always holds
at xr, by Lemma 2, LBr and UBr are always monotoni-
cally non-decreasing and monotonically non-increasing,
respectively. Thus, the following two cases should be
considered.

Case 1. For the case where LBr increases. By the
procedure MaintainThresholdInvariant, THr is up-
dated as THr := LBr.

Case 2. For the case where UBr decreases. By the in-
duction hypothesis and Lemma 5, LBr = THr ≤
UBr. Thus, THr does not change.

Therefore, LBr = THr always holds.

Theorem 2. For any agent xi ∈ X when the amended ver-
sion of ADOPT terminates, the current context CXi is cor-
rect, and THi = γi(di, CXi) = γi(CXi).

Proof. By Theorem 1, the amended version of ADOPT ter-
minates after a finite amount of time, and then THi =
UBi holds for any xi ∈ X . At that time, by di =
argmind∈Di UBi(d), THi = UBi(di) also holds. More-
over, by definition and Lemma 5,

γi(CXi) = min
d∈Di

γi(d,CXi)

≤ γi(di, CXi)

≤ UBi(di)

= THi.

Therefore, if THi = γi(CXi), then γi(di, CXi) =
γi(CXi). In the following, we use the induction on the depth
(say, k) of agent xi in the pseudo-tree.

Base Case (for k = 0). In this case, since SCP (xi) = ∅
holds and CXi = ∅ always holds, CXi is correct. Fur-
thermore, by Lemma 10, THi = LBi. Thus, when the
amended version of ADOPT terminates,

LBi = THi = UBi.

By Lemma 5, LBi ≤ γi(CXi) ≤ UBi. Thus, THi =
γi(CXi) holds.

Induction Step (for k > 0). By the induction hypothesis,
for xp = pa(xi), THp = γp(dp, CXp). Moreover,

since THp = UBp(dp), we have the following:

δp(dp, CXp) +
∑

xi∈C(xp)

thp(dp, xi)

=δp(dp, CXp)

+
∑

xi∈C(xp)

γi (CXp ∪ {(xp, dp)})

=δp(dp, CXp) +
∑

xi∈C(xp)

ubp(dp, xi).

Furthermore, by Lemma 4 and Lemma 5, and
ChildThresholdInvariant, for all xi ∈ C(xp),

γi (CXp ∪ {(xp, dp)}) ≤ ubp(dp, xi),

thp(dp, xi) ≤ ubp(dp, xi).

Thus, for all xi ∈ C(xp),

thp(dp, xi) = γi (CXp ∪ {(xp, dp)}) = ubp(dp, xi).
(7)

When xp terminates at a time t, the agent sends TER-
MINATE messages to all xi ∈ C(xp). At a time t′ > t,
if any xi receives the TERMINATE message, then the
agent updates the context CXi as CXp ∪ {(xp, dp)},
which is contained in the TERMINATE message. By the
induction hypothesis, CXp is correct at t. Also, when
xp terminates, since all x′

p ∈ P (xp) have already ter-
minated, the values of all x′

p do not change after t, and
thus CXp is correct after t. Moreover, since the value of
xp does not change after t and SCP (xi) ⊆ SCP (xp)∪
{xp}, and CXi does not change after a TERMINATE
message is received, CXi is correct after t′. Further-
more, when xi receives the TERMINATE message from
xp, THi is updated. Thus, THi = thp(dp, xi). By for-
mula (7) and Lemma 1, at t′,

THi = γi (CXp ∪ {(xp, dp)}) = γi(CXi).

At that time, xp terminates. Thus, since xi does not
receive any THRESHOLD message and TERMINATE
message after t′, THi may change only if LBi, UBi

change. By Lemma 5,

LBi ≤ THi = γi(CXi) ≤ UBi.

Thus, since ThresholdInvariant is always satisfied after
t′, THi does not change. Therefore, at termination, CXi

is correct and

THi = γi(CXi) = γi(di, CXi).

	Overview of ADOPT
	Traces of Counterexamples
	Counterexample to Termination
	Counterexample to Optimality Caused by Initialization
	Counterexample to Optimality Caused by TERMINATE Messages

	Pseudocode of the amended version of ADOPT
	Proof of Termination and Optimality for the Amended Version of ADOPT

